PART OF A SPECIAL ISSUE ON REACTIVE OXYGEN AND NITROGEN SPECIES Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching

نویسندگان

  • Thomas Roach
  • Ramona Miller
  • Siegfried Aigner
  • Ilse Kranner
چکیده

Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. Methods A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. Key Results NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2mM at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. Conclusions The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in xanthophylls correlated with H2O2 concentrations. Alternative NPQ mechanisms in algae involving proteins of the lightharvesting complex type and antioxidant protection of the thylakoid membrane by de-epoxidized carotenoids are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phycocyanin, cyanobacterial antioxidant: structure, function and applications

Phycobilins, open-chain tetrapyrrole pigment molecules, serve as accessory photosynthetic light-harvesting pigments in red algae and cyanobacteria. Phycobilin pigments are covalently linked with proteins and formed phycobiliproteins are organized into large macromolecular complexes called phycobilisomes on the top of the thylakoid membranes. In deep water, only green light is available, thus ph...

متن کامل

Formation of Hydrogen Peroxide by Chilled Goat Spermatozoa and the Effects of Dead Spermatozoa on Motility Characteristics

In this study, the formation of hydrogen peroxide (H2O2) by chilled goat spermatozoa was measured. Furthermore, the effects of dead spermatozoa on motility characteristics were studied. Fresh collected ejaculates from five Shami bucks were centrifuged and virtually all seminal plasma was removed. A part of the collected spermatozoa was killed by two ways: the first by repe...

متن کامل

Antioxidant activities of marine algae: A review

Oxidative stress is the result of an imbalance between pro-oxidant and antioxidant homeostasis that leads to the generation of toxic reactive oxygen species (ROS). The necessity of compounds with antioxidant activity is increasing as it is realized that the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been linked in the pathogenesis of several human diseas...

متن کامل

Ammonia Oxidation in the Ocean Can Be Inhibited by Nanomolar Concentrations of Hydrogen Peroxide

Marine Thaumarchaeota were discovered over 20 years ago and although a few isolates from this group are now available for study, we do not yet understand the environmental controls on their growth and distribution. Thaumarchaeotes oxidize ammonia to nitrite, mediating a key step in the global nitrogen cycle, and it is estimated that about 20% of all prokaryotic cells in the ocean belong to this...

متن کامل

Temporal study of Solduz wetland microalgae in southern part of Lack Urmia

Phytoplankton is one of the main components of wetlands, which plays a vital role in providing nutrients, oxygen for other organisms, stabilizing nitrogen and carbon dioxide. In the meantime, the current status of Lake Urmia highlights the need to conserve and protect wetlands related to these ecosystems and their living and non-living components. Therefore, this study was conducted to assist i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015